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Where is this image from? A, B, C?
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Geolocalization involves Vision and Mapping

Geo
localization

Location
(Mental) Mapping or Context

• Medieval city/Castle
12th–16th centuries

• 18-century street
layout (City blocks)

• Mid-large sized city

Vision

• irregular city blocks, 
• Massive stone houses
• Castle on a hill
• Green parks



Geospatial Embeddings: Encoding Geospatial Information 

How to describe this place?

with all physical 
data 𝒅[𝜆, 𝜙] we 

can measure

𝑑2 RGB image

𝑑3 high temp,

𝑑4 elev. over sea

𝑑5 low pop. dens

𝑑6 eco system

𝑑7 low predip.

𝑑1 text: “hot, desert”
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by what makes it
unique in a metric
embedding 𝒆[𝜆, 𝜙]
space



The Functions of Embeddings

Klemmer K., Rolf. E., Rußwurm M. et al., Earth Embeddings:
Towards AI-centric Representations of our Planet. Perspective in preparation



Geolocalization as Retrieval in an Embedding Space 
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Outline of this Talk: Learning Mental Maps in Neural Nets
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Outline of this Talk
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Part 1: Explicit Feature Extraction and Embedding Databases 

Part 2: Implicit neural Geo-Representations

Part 3: Implicit Embedding Models through Geolocalization



Part 1: Explicit 

Feature Extraction 

and Embedding 

Databases

Remote Sensing 
Foundation Model



Embedding Databases as pre-computed Features

Downstream 

Task 1

Downstream 

Task 2

Linear Regression 

or KNN

𝒅[𝜆, 𝜙]

heads

Remote Sensing 
Foundation Model



Embedding Databases as pre-computed Features

Inspired by Konrad Schindler’s talk on Foundation Models @LPS 2025

Downstream 

Task 1

Downstream 

Task 2

Linear Regression 

or KNN

𝒅[𝜆, 𝜙] 𝒆[𝜆, 𝜙]

Geospatial
database

(e.g., raster)

Embedding
database

(e.g., raster)

Downstream Domain Expertise

Deep Learning Expertise

loading of 

remote sensing data

storage of 

Compressed embeddings

Advantages: 

• No deep model inference –
just database lookups

• Very high compression rates

Remote 
Sensing 

Foundation 
Model



Example Embedding Databases

Brown, C. F., et al., 2025. AlphaEarth Foundations: 

An embedding field model for accurate and 
efficient global mapping from sparse label 

data. arXiv preprint arXiv:2507.22291.

Feng, Zhengpeng, Clement Atzberger, Sadiq Jaffer, 

Jovana Knezevic, Silja Sormunen, Robin Young, 
Madeline C. Lisaius et al. "TESSERA: Precomputed 

FAIR Global Pixel Embeddings for Earth 

Representation and Analysis." arXiv preprint 
arXiv:2506.20380 (2025).

AlphaEarth Embeddings Tessera Embeddings



Example Application: Tree Species Identification

Monthly 
Sentinel-1 & 2 + ERA5 

time series

Takayuki Ishikawa
Ishikawa, T., Bonannella, C., Lerink, B. J., & Rußwurm, M. (2025). Deep Pre-

trained Time Series Features for Tree Species Classification in the Dutch Forest 
Inventory. arXiv preprint arXiv:2508.18829.

Classic Approach Francini et al., 2024

Presto

AlphaEarth
Tessera

𝒅 𝜆, 𝜙 : 𝑒 𝜆, 𝜙 :

M
L
P

Embedding Approach



Results: Tree Species Identification

Takayuki Ishikawa
Ishikawa, T., Bonannella, C., Lerink, B. J., & Rußwurm, M. (2025). Deep Pre-

trained Time Series Features for Tree Species Classification in the 
Dutch Forest Inventory. arXiv preprint arXiv:2508.18829.

datasets #Cl Random Forest 
(Francini et al., 2024)

AlphaEarth
(frozen)

TESSERA
(frozen)

PRESTO
(frozen)

PRESTO *
(finetuned)

NFI
(COMB)

13 0.63 ± 0.01 0.63 ± 0.01 0.66 ± 0.01 0.48 ± 0.01 0.67 ± 0.02

Francini
(SIBA)

7 0.84 ± 0.00 0.90 ± 0.01 0.76 ± 0.01 0.38 ± 0.01 0.95 ± 0.01

Frozen 
embeddings beat 

hand-crafted 
harmonic features 

Fine-tuning deep models like Presto 
(Tseng et al., 2023) beat embeddings

Takeaway 1

Takeaway 2

* These numbers are work-in-progress 
and may still change slightly



Summary: Precomputed Embedding Databases 

Precomputed Embedding fields store 
deep features in a compressed form.

They are

▪ an output of remote sensing foundation 
models (Alpha Earth, or Presto) 

▪ very user-friendly: embedding 
“features” can be downloaded just like 
remote sensing data.

▪ But: they store generic patterns –
not explicitly what describes a 
location uniquely 

Major Tom Embeddings: Czerkawski, Mikolaj. 

"Global and dense embeddings of earth: Major tom floating in the 

latent space." arXiv preprint arXiv:2412.05600 (2024).

MOSAIKS Embeddings: Rolf, E., et al., (2021). A 

generalizable and accessible approach to machine learning with 

global satellite imagery. Nature communications, 12(1), 4392.

More examples
Geospatial Databases

Geospatial Data 

Layers

Precomputed 

Embedding 
Fields

𝑑1 reflectance

𝑑2 temperature

𝑑3 elevation

𝑑4 pop densíty

𝑑5 eco system

𝑑6 precipitation
𝑑7 land cover

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
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Part 2: Implicit 

neural Geo-

Representations



Implicit Neural Representations as active research field

For instance, in Neural Radiance Fields (NeRF) Mildenhall et al., 2020

Neural Network weights encode information on the scene 

https://www.matthewtancik.com/nerf


Supervised Learning encodes Geodata in Neural Nets

𝑥

𝑦

Neural Network

coordinates predicted

ො𝑣
loss

adjust weights

Epoch 

1

Epoch 100 Epoch 400

ground truth

𝑣

Ground truth: 

Land-Ocean Classification



Implicit Neural Representations for Species Mapping

Cole et al., 2023. Spatial Implicit Neural Representations for Global-Scale Species 

Mapping. International Conference on Machine Learning (ICML)

What can we do with the representation?



FS-SINR: Few-Shot Species Range Mapping

Embeddings provide a 
geospatial context of 

“similarity” 

Fewer species 
observations are

needed for a species 
range map.

Lange, C., et al. 2025, O. Feedforward Few-shot Species Range Estimation. 
In Forty-second International Conference on Machine Learning.



INR Lessions Learned 1: Sine activations work better

ReLU MLP:Sirens
a MLP with sine activations Multi-layer Perceptron (MLP)

with ReLU activations

𝑟
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r
ReLU(     )

ReLU(     )

ReLU(     )

ReLU(     )
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ReLU(     )

g
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𝑟
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sin(     )

sin(     )
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Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural 
representations with periodic activation functions. Advances in neural information 
processing systems, 33, 7462-7473.

Takeaway: Sine activation functions are better 
when storing data in neural network weights 



Sine Activations Analogue to Fourier Coefficients

any signal can be approximated with sine and cosine basis functions

scale 1

scale 2

scale 3

scale 4



Sea Ice Thickness through Deep Random Features

Chen, W., Mahmood, A., Tsamados, M., & Takao, S. (2025). Deep 

random features for scalable interpolation of spatiotemporal 

data. In The Thirteenth International Conference on Learning 
Representations.



INR Lessions Learned 2: Positional Encoding of Coords

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., et al. & Ng, R. (2020). 

Fourier features let networks learn high frequency functions in low dimensional domains. Advances in 
neural information processing systems, 33, 7537-7547.

Fourier Features (Tancik et al., 2020)

Positional encoding (no trainable weights)



𝜆, 𝜙 𝒚PE NN

Location Encoder Network

Positional Encoding PE
(non-parametric function)

geographic 
coordinates

scalar/vector
representation

Neural Network NN
(with trainable weights)

𝒚 = NN(PE(𝜆, 𝜙))

Review of location encoders:

Mai, G., Janowicz, K., Hu, Y., Gao, S., Yan, B., Zhu, R., & Lao, N. (2022). A review of 

location encoding for GeoAI: methods and applications. International Journal of 

Geographical Information Science, 36(4), 639-673.

Location Encoder:  Positional Encoding & Neural Network



Adding Time through Fourier Time Encoding

Fourier Sine

Cosine encoding

makes Sense

Mickisch, D., Klemmer, K., Rußwurm, M., Rolf, E. , Teng, M., & 

Rolnick, D. A Joint Space-Time Encoder for Geographic Time-

Series Data. 

Previous version In ICLR 2025 Workshop on Machine Learning 

Multiscale Processes.



Spherical Harmonics as Positional Encoding Function

Gerstl, M. (2008). Computing the Earth gravity field with spherical harmonics. In From Nano to Space: Applied 
Mathematics Inspired by Roland Bulirsch (pp. 277-294). Berlin, Heidelberg: Springer Berlin Heidelberg.

0.5

-0.2 0.4 0.1

0.9 -0.1 -0.2 0.5 0.4
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Our Proposed Location Encoder: Siren(SH(𝝀, 𝝓))

𝜆, 𝜙 𝒚PE NN

Location Encoder Network

Spherical Harmonics basis functions
(non-parametric function)

geographic 
coordinates

scalar/vector
representation

Sinusoidal Representation Networks
(with trainable weights)

𝒚 = Siren(SH(𝜆, 𝜙))

SirenSH

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location encoding with 
spherical harmonics and sinusoidal representation networks. International Conference for Learning 
Representations (ICLR). Spotlight paper (top 5% of submissions)



SirenSH Controlling Smoothness via L

Linear(SH(𝜆, 𝜙))

SH Linear

Siren(SH(𝜆, 𝜙))

SH Siren

L

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location 

encoding with spherical harmonics and sinusoidal representation networks. International 

Conference for Learning Representations.



Results: Orthogonal Representations (SH & Siren) matter

iNaturalist 2018 accuracy improvement

Spherical Harmonics work well with all NNs Siren is work well with all PEs

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location 

encoding with spherical harmonics and sinusoidal representation networks. International 

Conference for Learning Representations.



Location Encoders - Recommendations

To integrate coordinates in a deep neural network:

we can recommend:

1. Siren as Neural Network for any location 
encoding problem and 

2. Spherical Harmonic basis functions for 

global geographic problems where the 
spherical geometry matters

Code: github.com/marccoru/locationencoder
Contact: marc.russwurm@wur.nl

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location 

encoding with spherical harmonics and sinusoidal representation 

networks. International Conference for Learning Representations.

https://github.com/marccoru/locationencoder


Larger Takeaway: Location Encoders store Geodata

Implicit
Neural Geo 

Representation

Explicit
Geospatial 

Database

point

line

polygon

raster

discrete geodata
stored in geospatial

database

data stored in NN weights 
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continuous geospatial
fields stored in neural

network weights



Part 3: Implicit 

Embedding Models 

through 

Geolocalization



Geolocalization via Satellite Contrastive

Location-Image Pretraining (SatCLIP)

(-7.467, -52.334)

(37.759, -122.43)

(11.049, -84.291)

Location

Encoder

Image 

Encoder
Contrastive 
learning: match 

image and 
location 
embeddings.

Klemmer, K., Rolf, E., Robinson, C., Mackey, L., & Rußwurm, M. (2025). Satclip: Global, general-purpose 

location embeddings with satellite imagery. AAAI 2025



A simple pre-trained MLP stores an Embedding Field

(-7.467, 

-52.334)

(37.759, 

-122.43)

(11.049, 

-84.291)

(SatCLIP) 

Location

Encoder

pre-trained SatCLIP (L=40) embeddings 

(3-PCA visualization of 256 dimensions) 

far but 

similar

close but 

different



Intuition behind SatCLIP: distill location-specific patterns

     learns an 

implicit 

representation 

of ground conds.
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wealth agriculture
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SatCLIP availability 

SatCLIP is a small 
SirenSH with weights are 
publicly available on 
HuggingFace



Conditional Image Generation

SatCLIP is used to guide diffusion models:

Sastry, Srikumar et al. (2024) GeoSynth: Contextually-aware high-resolution satellite image 
synthesis. EarthVision, CVPR.



Usages of SatCLIP – Location-guided super resolution

Panangian, D., & Bittner, K. (2025). Can Location Embeddings 
Enhance Super-Resolution of Satellite Imagery?. arXiv preprint 
arXiv:2501.15847.



Similar works: GeoCLIP & RANGE

RANGE: Retrieval Augmented Neural Fields for 
Multi-Resolution Geo-Embeddings

Vivanco Cepeda, Vicente, Gaurav Kumar Nayak, and Mubarak Shah. "Geoclip: Clip-inspired alignment 

between locations and images for effective worldwide geo-localization." Advances in Neural Information 
Processing Systems 36 (2023): 8690-8701.

Dhakal, A., Sastry, S., Khanal, S., Ahmad, A., Xing, E., & Jacobs, N. (2025). RANGE: Retrieval Augmented 

Neural Fields for Multi-Resolution Geo-Embeddings. In Proceedings of the Computer Vision and Pattern 
Recognition Conference (pp. 24680-24689).

GeoCLIP: CLIP-inspired alignment of ground
images for worldwide geolocalization 



Conclusion:

Storing Mental Maps 

in Neural Nets



Implicit Neural Representations

Continuous

Embedding Fields

𝑒1
𝑒2
𝑒3
𝑒4
𝑒…

𝜙, 𝜆, 𝑡

similar climate → similar emb

Self-SL: CLIP/geolocalization
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Explicit Feature Extraction

Geospatial Data 

Layers

Precomputed 

Embedding 
Fields

𝑑1 reflectance

𝑑2 temperature
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Location Encoder

Neural Networks

𝑑1

lat. 𝜙

lon. 𝜆

time 𝑡

coordinate value at
coord.

trained via: supervised learning (SL)

Part 2

weights store geospatial information

Explicit Feat. Extraction/Implicit Neural Representations

Part 1



Precomputed Embedding Databases

• created by “foundation” models with 
(cross-modal) auto-encoding 

• available as compressed
rasters of “deep features”

• drop-in replacement for 
raw geodata & build on
existing geodata 
infrastructure (GEE)

• are generally high-resolution

Continuous Embedding Models

• created by small neural networks 
through self-supervised geolocalization

• available as pre-trained
models (on HuggingFace)

• drop-in model to encode 
coordinates in neural net
architectures

• are generally lower-resolution

Embedding Databases versus Embedding Models

Implicit Neural RepresentationsExplicit Feature Extraction

typically available as typically available as



Is there one Embedding Strategy to rule them all? - No

Levien van Krieken
WUR MSc Thesis

van Krieken, L. (2025). Comparing image and location encoder 
models in the context of disease mapping (MSc thesis, 
Wageningen University & Research).

PM2.5: Air Quality

E100k: Disease Probability 

For contextual Tasks: Embedding models

SatCLIP/GeoCLIP are better
For visual Tasks: Land Cover Classifications

Image Feature Encodings are better
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Intrinsic Dimension (ID) to Analyze Current Embeddings

The intrinsic dimension is much lower 
than the ambient dimension D

Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). Measuring 
the Intrinsic Dimension of Earth Representations. arXiv preprint

The intrinsic dimension reveals spatial 
artifacts due to training data biases



Representativeness: 

Higher Intrinsic Dimension 

Correlates with Task 

Performance

Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). Measuring 
the Intrinsic Dimension of Earth Representations. arXiv preprint



Task-alignment: Lower Intrinsic 

Dimension After Fine-tuning 

Correlates with Task Performance

Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). Measuring 
the Intrinsic Dimension of Earth Representations. arXiv preprint



Thank you, contacts & collaborators

SatCLIP:
Klemmer et al., 2025, AAAI
https://github.com/microsoft/satclip

https://arxiv.org/pdf/2311.17179.pdf

Marc Rußwurm, 
marc.russwurm@wur.nl

Assistant Professor 
Wageningen University, Netherlands

Collaborators: Esther Rolf, Konstantin Klemmer

Geographic Location Encoding:
Rußwurm et al., 2024, ICLR
https://marcrusswurm.com/locationencoder

More technical 
45 minute 
talk at the SSL4EO 
Summer School 2024

Intrinsic Dimension:
Rao et al., 2025, ArXiv
https://github.com/arjunarao619/GeoINRID

https://arxiv.org/abs/2511.02101

https://github.com/microsoft/satclip
https://arxiv.org/pdf/2311.17179.pdf
mailto:marc.russwurm@wur.nl
https://marcrusswurm.com/locationencoder

	Default Section
	Slide 1: Earth Embeddings: Learning Mental Maps in Neural Nets
	Slide 2: Where is this image from? A, B, C?
	Slide 3: Geolocalization involves Vision and Mapping
	Slide 4: Geospatial Embeddings: Encoding Geospatial Information 
	Slide 5: The Functions of Embeddings
	Slide 6: Geolocalization as Retrieval in an Embedding Space 
	Slide 7: Outline of this Talk: Learning Mental Maps in Neural Nets
	Slide 8: Outline of this Talk

	Part 1: Pre-Computed Embedding Fields
	Slide 9: Part 1: Explicit Feature Extraction and Embedding Databases 
	Slide 10: Embedding Databases as pre-computed Features
	Slide 11: Embedding Databases as pre-computed Features
	Slide 12: Example Embedding Databases
	Slide 13: Example Application: Tree Species Identification
	Slide 14: Results: Tree Species Identification
	Slide 15: Summary: Precomputed Embedding Databases 

	Part 2: Implicit Neural Geo-representations
	Slide 16: Part 2: Implicit neural Geo-Representations
	Slide 18: Implicit Neural Representations as active research field
	Slide 19: Supervised Learning encodes Geodata in Neural Nets
	Slide 20: Implicit Neural Representations for Species Mapping
	Slide 21: FS-SINR: Few-Shot Species Range Mapping
	Slide 22: INR Lessions Learned 1: Sine activations work better
	Slide 23: Sine Activations Analogue to Fourier Coefficients
	Slide 24: Sea Ice Thickness through Deep Random Features
	Slide 25: INR Lessions Learned 2: Positional Encoding of Coords
	Slide 26
	Slide 27: Adding Time through Fourier Time Encoding
	Slide 28: Spherical Harmonics as Positional Encoding Function
	Slide 30: Our Proposed Location Encoder: Siren(SH(𝝀, 𝝓))
	Slide 31: SirenSH Controlling Smoothness via L
	Slide 33: Results: Orthogonal Representations (SH & Siren) matter
	Slide 34: Location Encoders - Recommendations
	Slide 35: Larger Takeaway: Location Encoders store Geodata

	Part 3: SatCLIP
	Slide 36: Part 3: Implicit Embedding Models through Geolocalization
	Slide 37: Geolocalization via Satellite Contrastive Location-Image Pretraining (SatCLIP)
	Slide 38: A simple pre-trained MLP stores an Embedding Field
	Slide 39: Intuition behind SatCLIP: distill location-specific patterns
	Slide 40: SatCLIP availability 
	Slide 41
	Slide 42: Usages of SatCLIP – Location-guided super resolution
	Slide 43: Similar works: GeoCLIP & RANGE

	Conclusions
	Slide 44: Conclusion: Storing Mental Maps in Neural Nets
	Slide 46: Explicit Feat. Extraction/Implicit Neural Representations
	Slide 47: Embedding Databases versus Embedding Models
	Slide 48: Is there one Embedding Strategy to rule them all? - No
	Slide 49: Intrinsic Dimension (ID) to Analyze Current Embeddings
	Slide 50: Representativeness: Higher Intrinsic Dimension Correlates with Task Performance
	Slide 51: Task-alignment: Lower Intrinsic Dimension After Fine-tuning Correlates with Task Performance
	Slide 52: Thank you, contacts & collaborators


