Earth Embeddings: Learning Mental Maps in Neural Nets

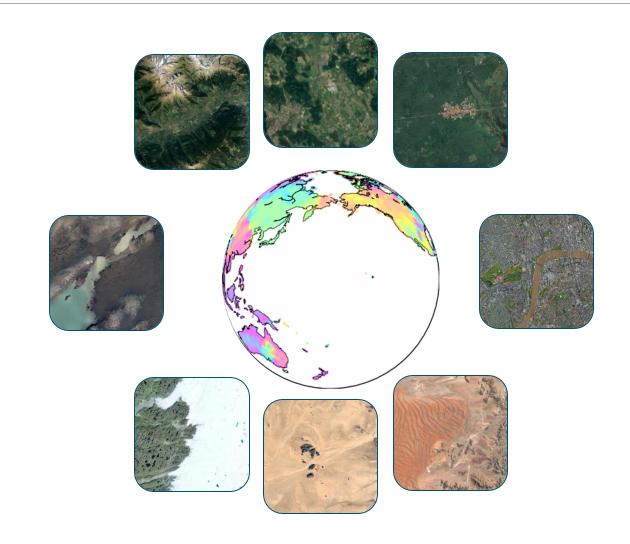
Continents Webinar
The University of Edinburgh

November 12th 2025

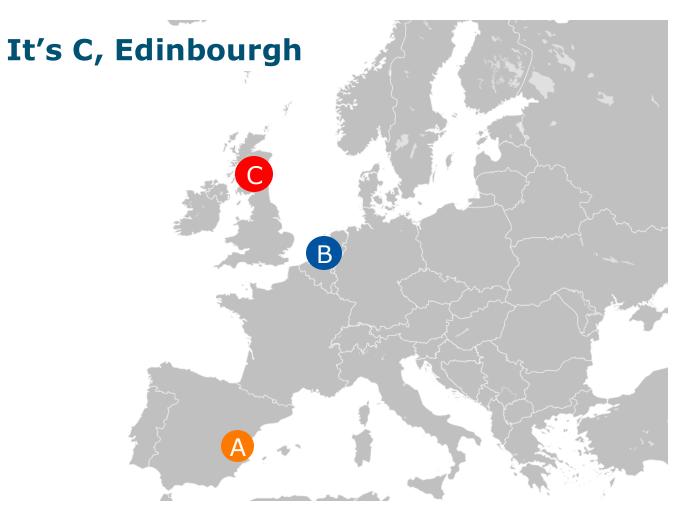
Marc Rußwurm

Assistant Professor

Wageningen University



Where is this image from? A, B, C?



Geolocalization involves Vision and Mapping

- irregular city blocks,
- Massive stone houses
- Castle on a hill
- Green parks

- Medieval city/Castle 12th-16th centuries 18-century street layout (City blocks)
- Mid-large sized city

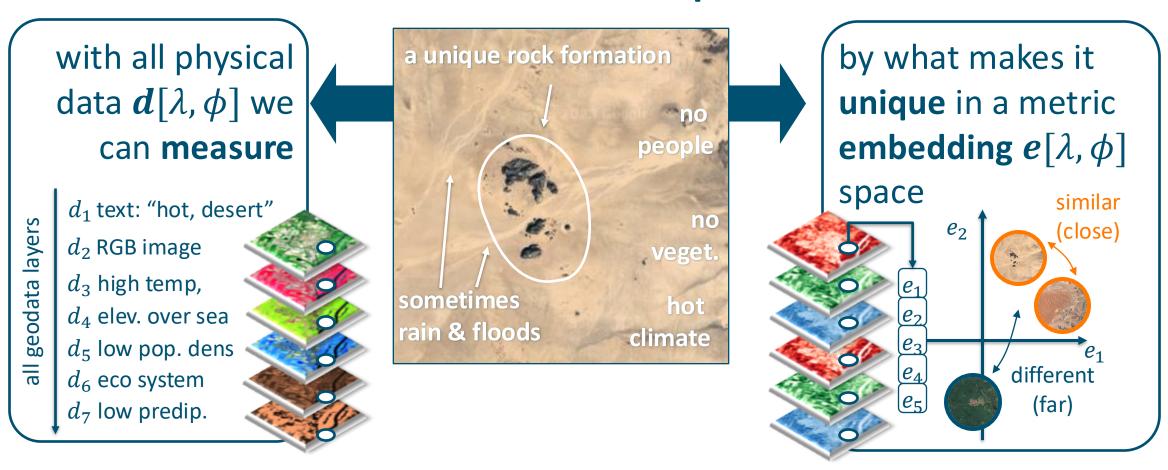
Geo localization

Location

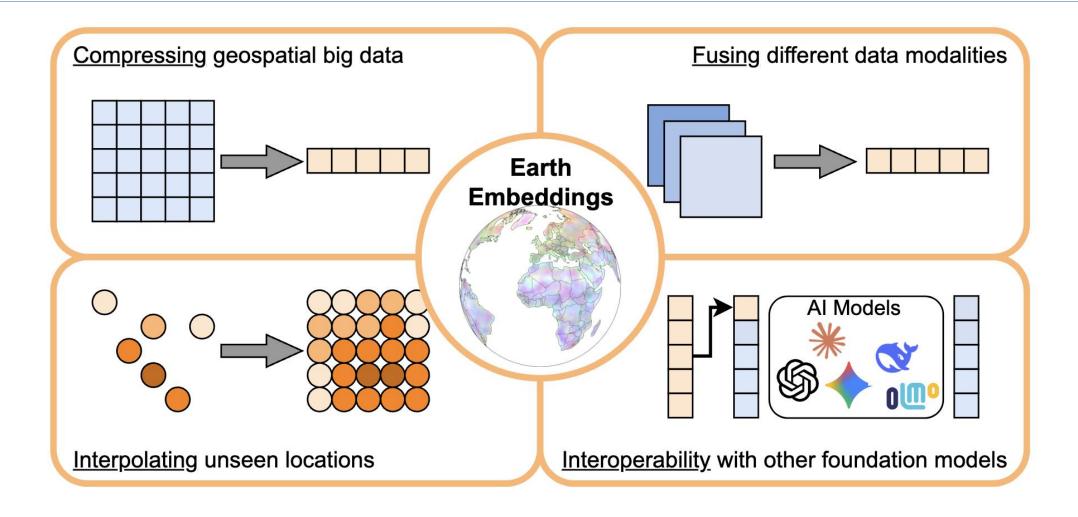
(Mental) Mapping or Context

Geospatial Embeddings: Encoding Geospatial Information

How to describe this place?

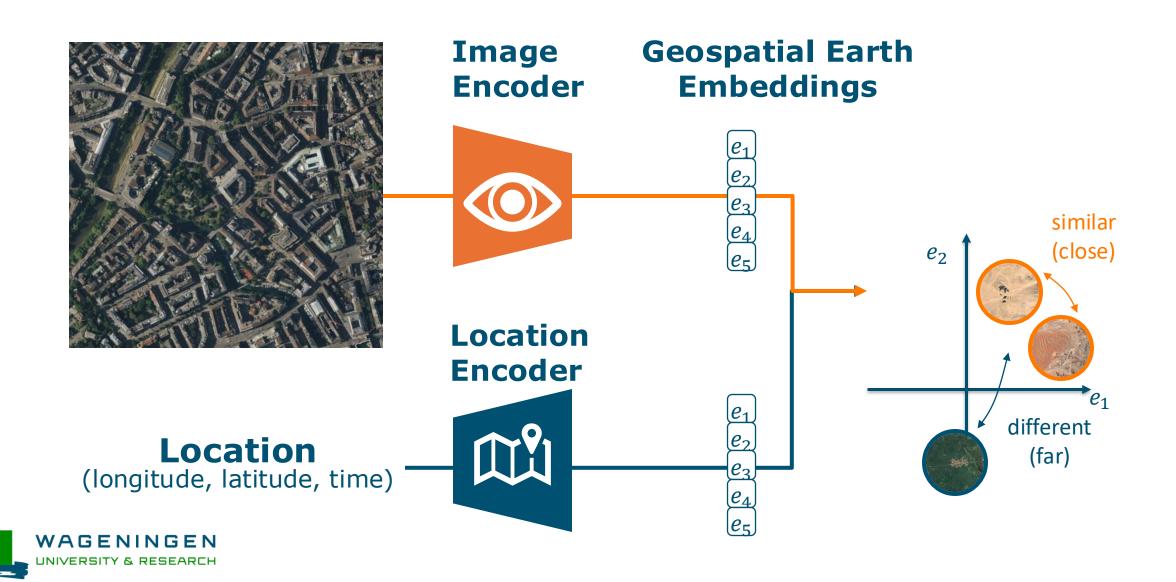


The Functions of Embeddings

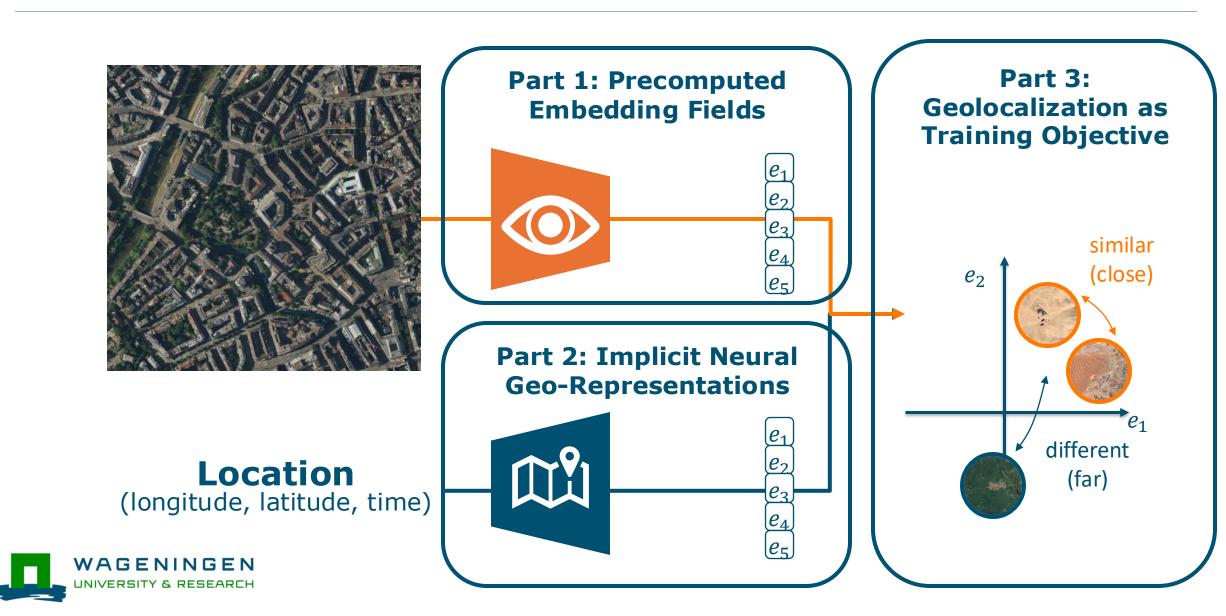


Klemmer K., Rolf. E., Rußwurm M. et al., Earth Embeddings: Towards Al-centric Representations of our Planet. Perspective in preparation

Geolocalization as Retrieval in an Embedding Space



Outline of this Talk: Learning Mental Maps in Neural Nets



Outline of this Talk

Location

(longitude, latitude, time)

Part 1: Precomputed Embedding Fields

Part 1: Explicit Feature Extraction and Embedding Databases

WADENINGEN

Part 2: Implicit neural Geo-Representations

Part 2: Implicit neural Geo-Representations

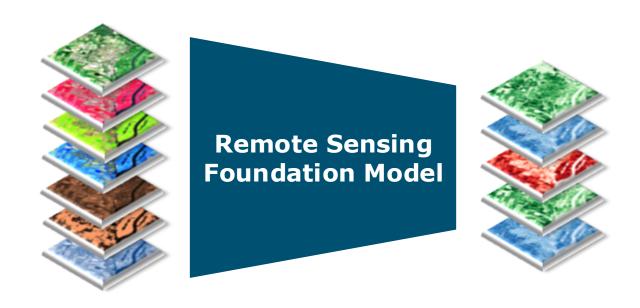
WADENINGEN

Part 3: Geolocalization as Training Objective

Part 3: Implicit Embedding Models through Geolocalization

WAGENINGEN UNIVERSITY & RESEARCH

Part 1: Explicit Feature Extraction and Embedding Databases



Embedding Databases as pre-computed Features

Embedding Databases as pre-computed Features

Embedding database (e.g., raster)

loading of remote sensing data

storage of Compressed embeddings

Downstream Domain Expertise

Deep Learning Expertise

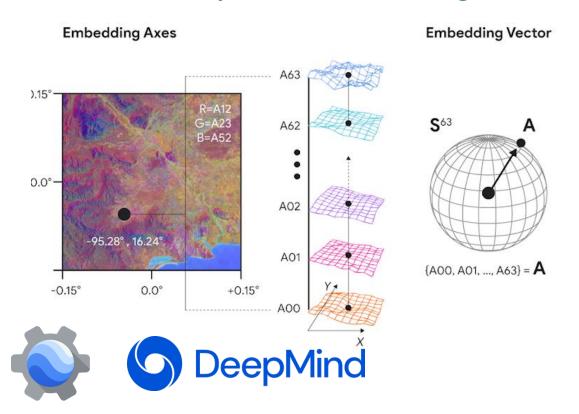
Remote Sensing Foundation Model

Advantages:

- No deep model inference just database lookups
- Very high compression rates

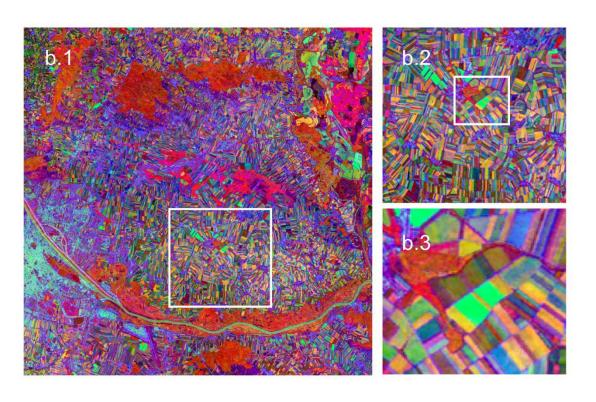
Example Embedding Databases

AlphaEarth Embeddings



Brown, C. F., et al., 2025. AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data. arXiv preprint arXiv:2507.22291.

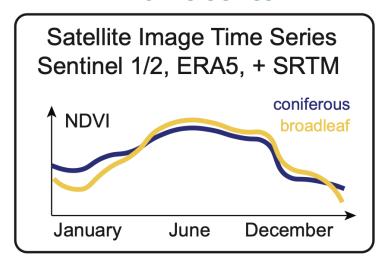
Tessera Embeddings



Feng, Zhengpeng, Clement Atzberger, Sadiq Jaffer, Jovana Knezevic, Silja Sormunen, Robin Young, Madeline C. Lisaius et al. "TESSERA: Precomputed FAIR Global Pixel Embeddings for Earth Representation and Analysis." arXiv preprint arXiv:2506.20380 (2025).

Example Application: Tree Species Identification

Monthly
Sentinel-1 & 2 + ERA5
time series

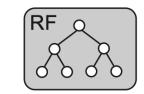


Embedding Approach

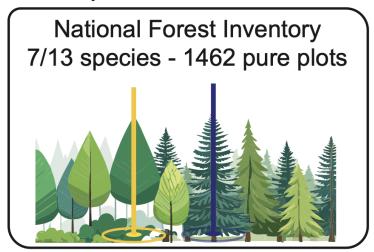
Classic Approach Francini et al., 2024

Harmonic Features

$$P_i = \beta_0 + \beta_1 t + \beta_2 \cos(\cdot) + \dots$$



Tree Species Classification



Ishikawa, T., Bonannella, C., Lerink, B. J., & Rußwurm, M. (2025). Deep Pretrained Time Series Features for Tree Species Classification in the Dutch Forest Inventory. arXiv preprint arXiv:2508.18829.

Results: Tree Species Identification

* These numbers are work-in-progress and may still change slightly

datasets	#CI	Random Forest (Francini et al., 2024)	AlphaEarth (frozen)	TESSERA (frozen)	PRESTO (frozen)	PRESTO * (finetuned)
NFI (COMB)	13	0.63 ± 0.01	0.63 ± 0.01	0.66 ± 0.01	0.48 ± 0.01	0.67 ± 0.02
Francini (SIBA)	7	0.84 ± 0.00	0.90 ± 0.01	0.76 ± 0.01	0.38 ± 0.01	0.95 ± 0.01

Takeaway 1

Frozen
embeddings beat
hand-crafted
harmonic features

Takeaway 2

Fine-tuning deep models like Presto (Tseng et al., 2023) beat embeddings

Ishikawa, T., Bonannella, C., Lerink, B. J., & Rußwurm, M. (2025). Deep Pretrained Time Series Features for Tree Species Classification in the Dutch Forest Inventory. arXiv preprint arXiv:2508.18829.

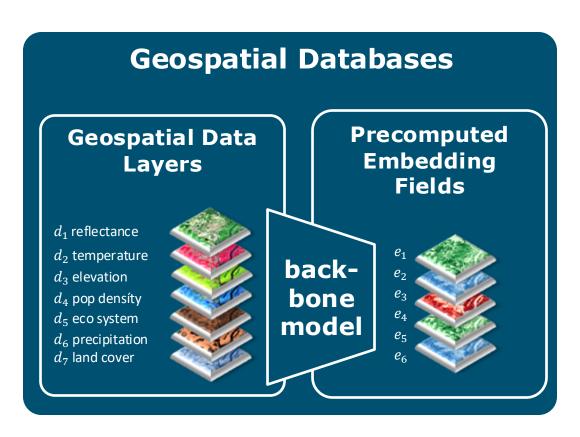
Takayuki Ishikawa

Summary: Precomputed Embedding Databases

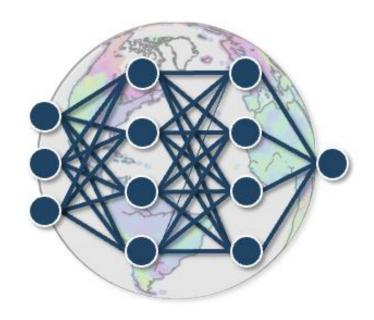
Precomputed Embedding fields store deep features in a compressed form.

They are

- an output of remote sensing foundation models (Alpha Earth, or Presto)
- very user-friendly: embedding "features" can be downloaded just like remote sensing data.
- But: they store generic patterns not explicitly what describes a location uniquely



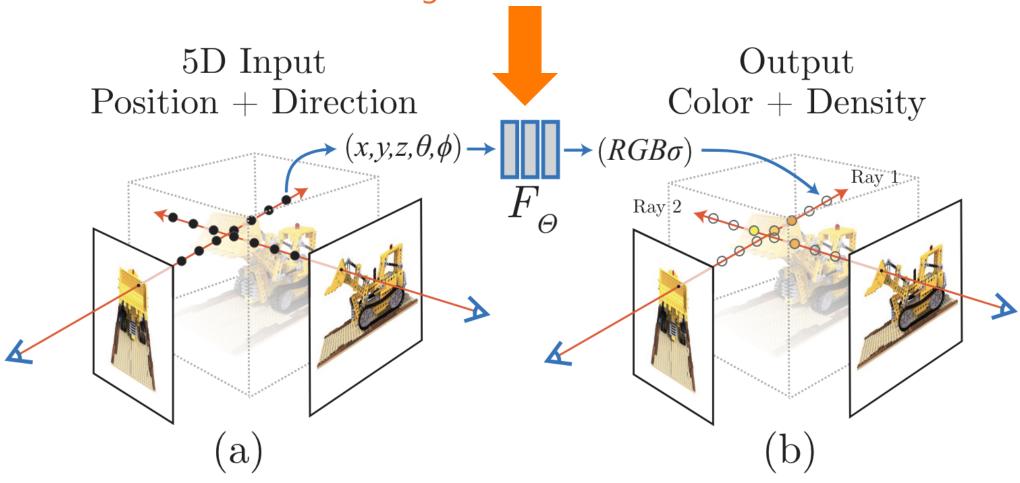
Part 2: Implicit neural Geo-Representations



Implicit Neural Representations as active research field

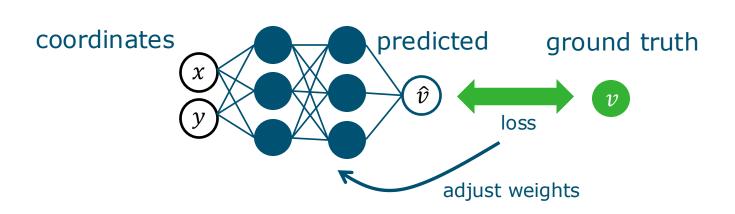
For instance, in Neural Radiance Fields (NeRF) Mildenhall et al., 2020

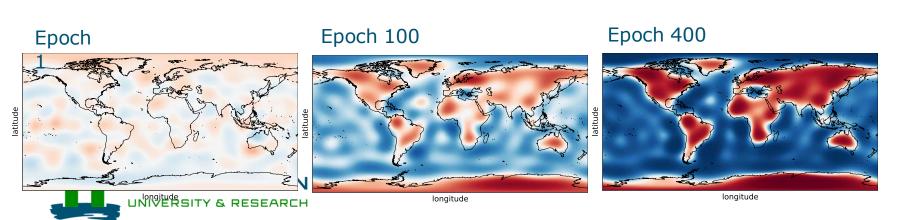
Neural Network weights encode information on the scene



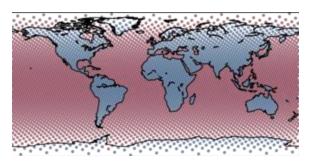
Supervised Learning encodes Geodata in Neural Nets

Neural Network





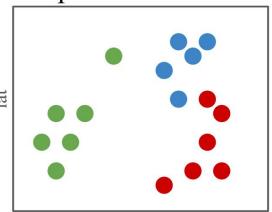
Ground truth: Land-Ocean Classification



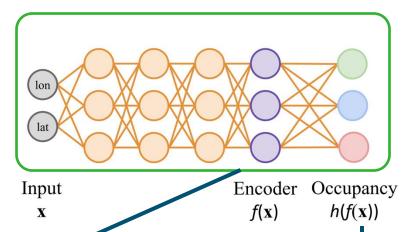
Implicit Neural Representations for Species Mapping

Input Data

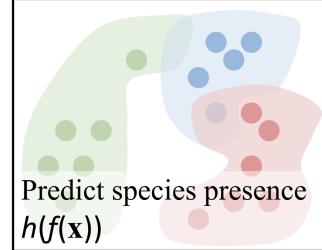
Species Presence



Species Range Model

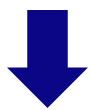


Cole et al., 2023. Spatial Implicit Neural Representations for Global-Scale Species Mapping. International Conference on Machine Learning (ICML)

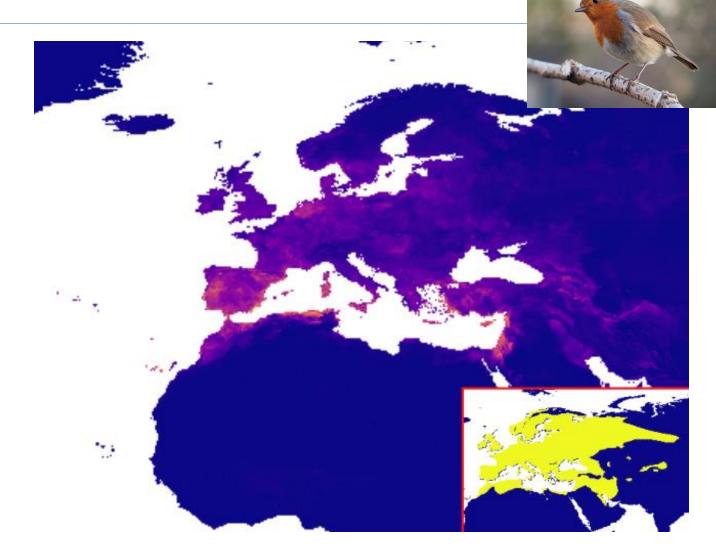


FS-SINR: Few-Shot Species Range Mapping

Embeddings provide a geospatial context of "similarity"



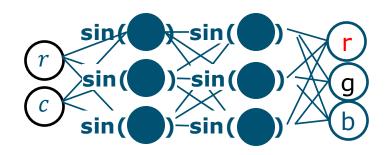
Fewer species observations are needed for a species range map.



Lange, C., et al. 2025, O. Feedforward Few-shot Species Range Estimation. In *Forty-second International Conference on Machine Learning*.

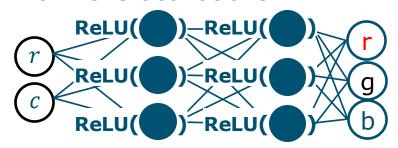
INR Lessions Learned 1: Sine activations work better

Sirens a MLP with sine activations



ReLU MLP:

Multi-layer Perceptron (MLP) with ReLU activations

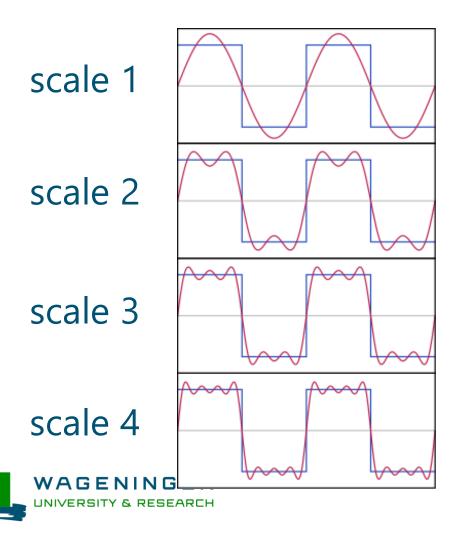


Takeaway: Sine activation functions are better when storing data in neural network weights

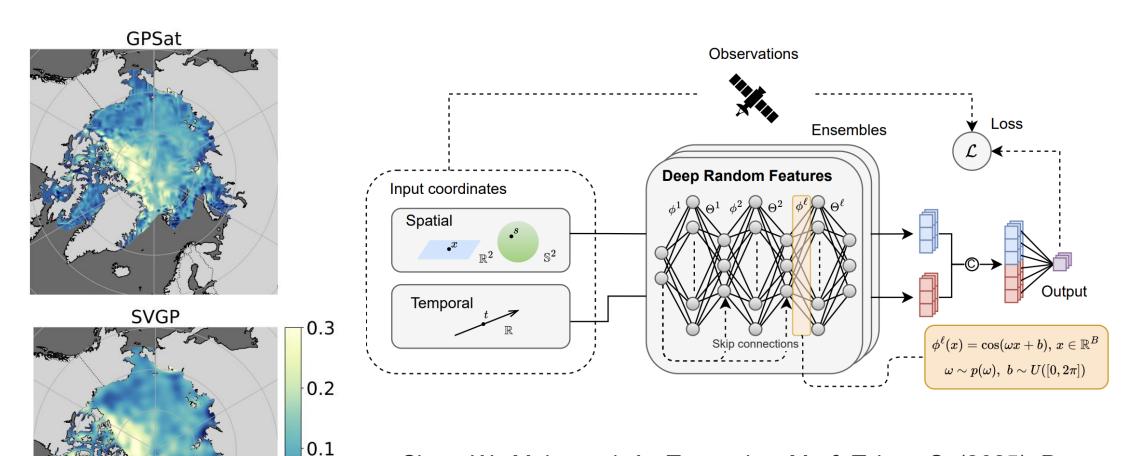
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. Advances in neural information processing systems, 33, 7462-7473.

Sine Activations Analogue to Fourier Coefficients

any signal can be approximated with sine and cosine basis functions



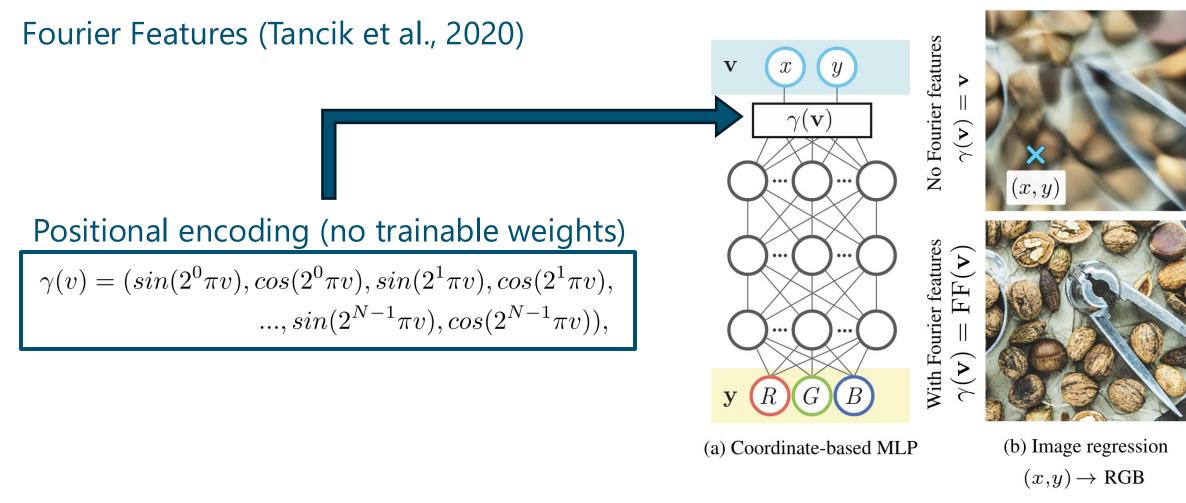
Sea Ice Thickness through Deep Random Features



0.0

Chen, W., Mahmood, A., Tsamados, M., & Takao, S. (2025). **Deep random features for scalable interpolation of spatiotemporal data.** In *The Thirteenth International Conference on Learning Representations*.

INR Lessions Learned 2: Positional Encoding of Coords

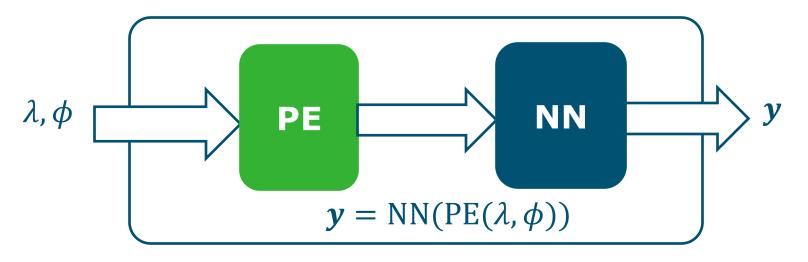


Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., et al. & Ng, R. (2020). **Fourier features let networks learn high frequency functions in low dimensional domains.** *Advances in neural information processing systems*, *33*, 7537-7547.

Location Encoder: Positional Encoding & Neural Network

Location Encoder Network

geographic coordinates



scalar/vector representation

Positional Encoding PE

(non-parametric function)

Neural Network NN

(with trainable weights)

Review of location encoders:

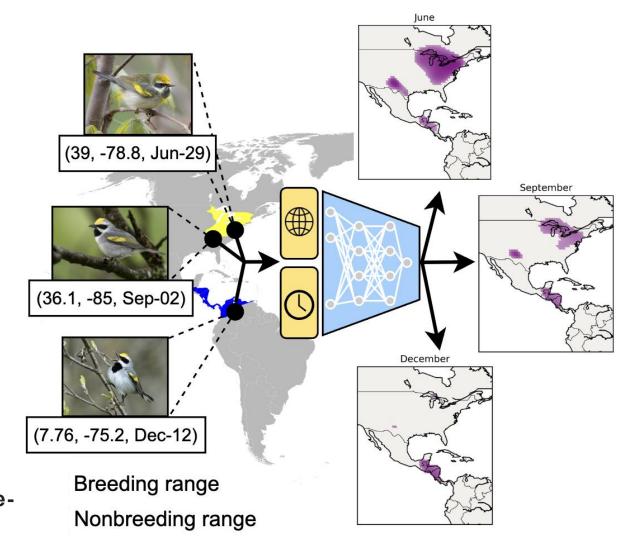
Mai, G., Janowicz, K., Hu, Y., Gao, S., Yan, B., Zhu, R., & Lao, N. (2022). **A review of location encoding for GeoAI**: methods and applications. International Journal of Geographical Information Science, 36(4), 639-673.

Adding Time through Fourier Time Encoding

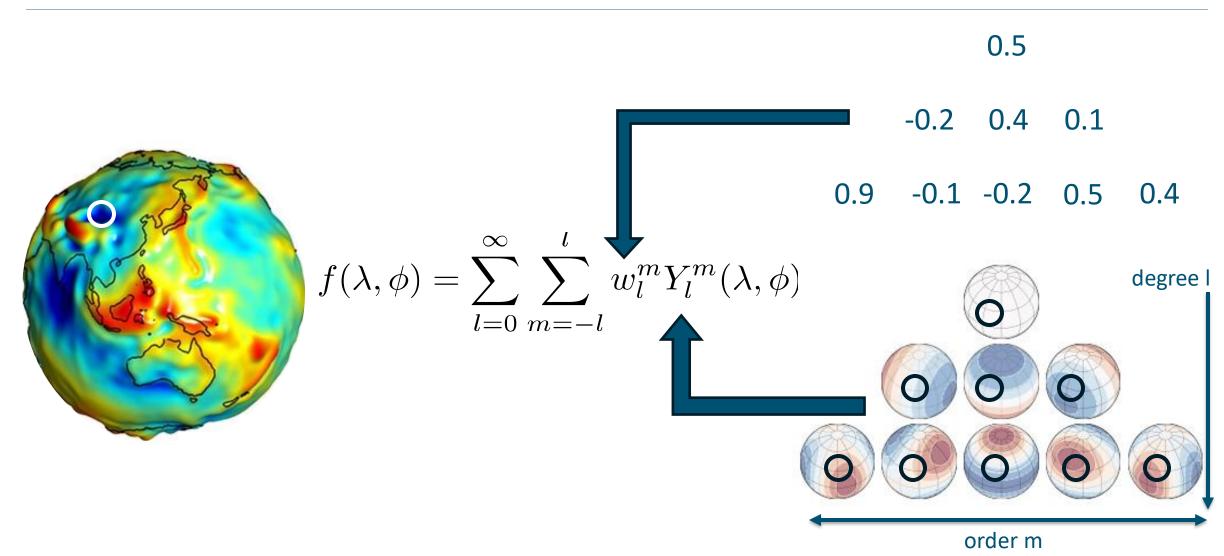
Positional time encoder One of the following: Time copy Triangle Monomial Legendre **Fourier Sine Cosine encoding** Fourier makes Sense

Mickisch, D., Klemmer, K., Rußwurm, M., Rolf, E., Teng, M., & Rolnick, D. A Joint Space-Time Encoder for Geographic Time-Series Data.

Previous version In *ICLR 2025 Workshop on Machine Learning Multiscale Processes*.

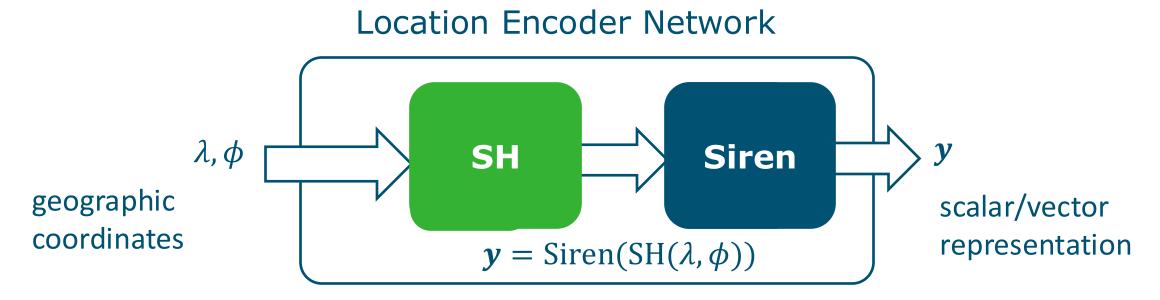


Spherical Harmonics as Positional Encoding Function



Gerstl, M. (2008). Computing the Earth gravity field with spherical harmonics. In From Nano to Space: Applied Mathematics Inspired by Roland Bulirsch (pp. 277-294). Berlin, Heidelberg: Springer Berlin Heidelberg.

Our Proposed Location Encoder: Siren(SH(λ , ϕ))

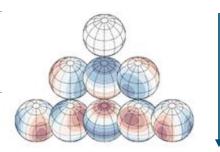


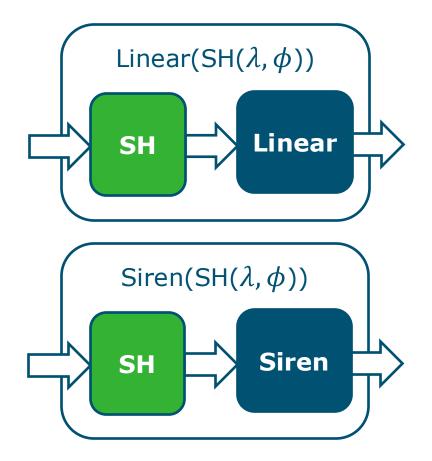
Spherical Harmonics basis functions (non-parametric function)

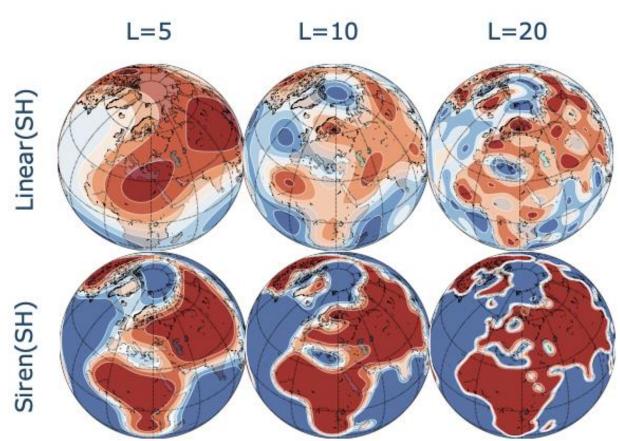
Sinusoidal Representation Networks (with trainable weights)

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). **Geographic location encoding with spherical harmonics and sinusoidal representation networks**. International Conference for Learning Representations (ICLR). Spotlight paper (top 5% of submissions)

SirenSH Controlling Smoothness via L



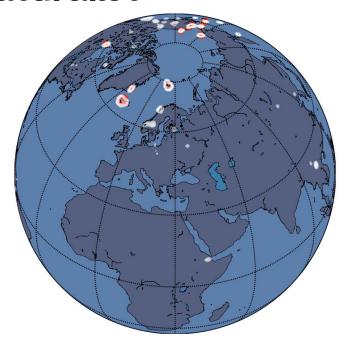




Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location encoding with spherical harmonics and sinusoidal representation networks. International Conference for Learning Representations.

Results: Orthogonal Representations (SH & Siren) matter

Naturalist



iNaturalist 2018 accuracy improvement

$PE \downarrow NN \rightarrow$	LINEAR	FCNET	SIRENNET
DIRECT	-5.9 ± 0.1	$+9.3 \pm 0.3$	$+12.1\pm0.1$
CARTESIAN3D	$+0.8 \pm 0.2$	$+11.8 \pm 0.1$	$+12.0\pm0.1$
WRAP	-0.1 ± 0.1	$+12.1\pm0.1$	$+12.1\pm0.1$
Grid	$+11.2\pm0.1$	$+11.8 \pm 0.2$	$+11.6 \pm 0.4$
THEORY	$+11.5 \pm 0.0$	$+10.8 \pm 0.0$	$+11.4\pm0.1$
SPHEREC	$+11.2\pm0.1$	$+12.0\pm0.2$	$+12.3\pm0.1$
SPHEREC+	$+11.1\pm0.2$	$+11.5\pm0.3$	$+10.3 \pm 0.4$
SPHEREM	$+7.2\pm0.2$	$+11.3\pm0.2$	$+10.6\pm0.6$
SphereM+	$+11.6\pm0.1$	$+12.0\pm0.1$	$+10.7\pm0.2$
SH (ours)	$+10.5 \pm 0.1$	$+12.0\pm0.0$	$\mathbf{+12.3} \pm 0.2$

image-only: 59.2% top-1 accuracy with encoder NN(PE) ↑

Spherical Harmonics work well with all NNs

Siren is work well with all PEs

Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). Geographic location encoding with spherical harmonics and sinusoidal representation networks. International Conference for Learning Representations.

Location Encoders - Recommendations

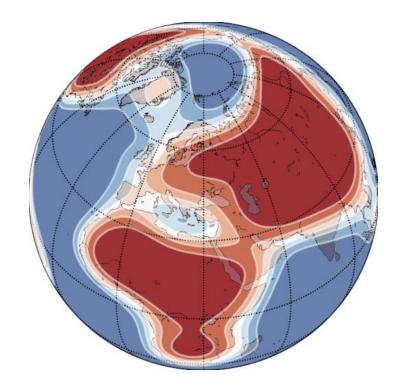
To integrate coordinates in a deep neural network:

we can recommend:

- Siren as Neural Network for any location encoding problem and
- 2. Spherical Harmonic basis functions for **global geographic problems** where the spherical geometry matters

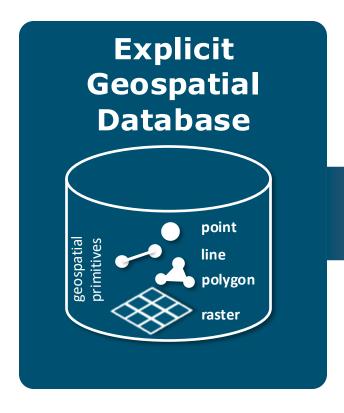
Code: github.com/marccoru/locationencoder

Contact: marc.russwurm@wur.nl



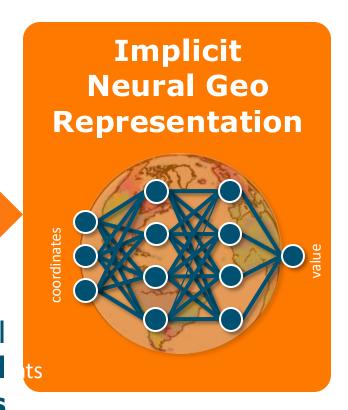
Rußwurm, M., Klemmer, K., Rolf, E., Zbinden, R., & Tuia, D. (2024). **Geographic location encoding with spherical harmonics and sinusoidal representation networks.** International Conference for Learning Representations.

Larger Takeaway: Location Encoders store Geodata

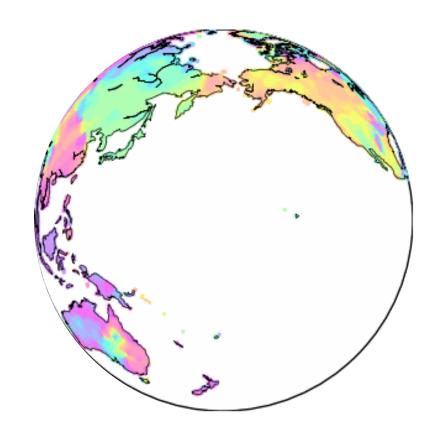


discrete geodata stored in geospatial database

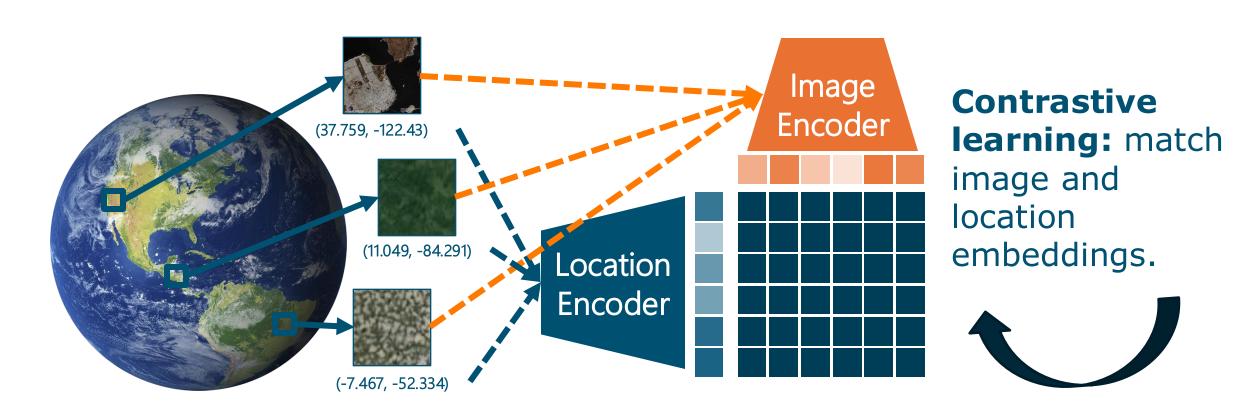
continuous geospatial fields stored in neural network weights



Part 3: Implicit Embedding Models through Geolocalization

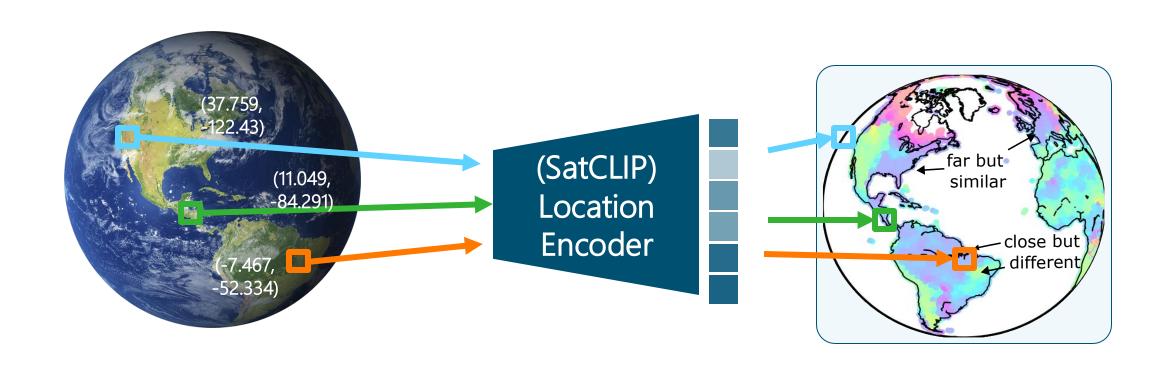


Geolocalization via Satellite Contrastive Location-Image Pretraining (SatCLIP)

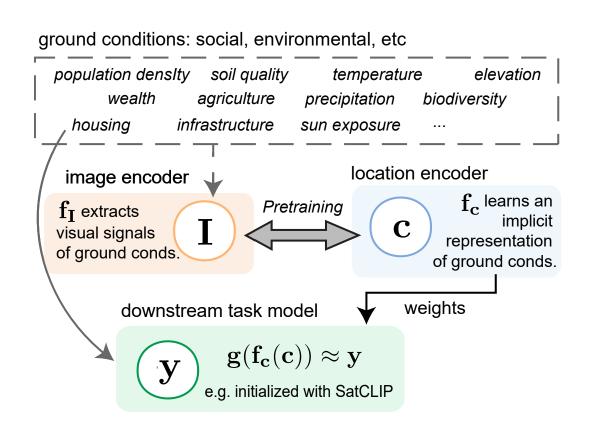


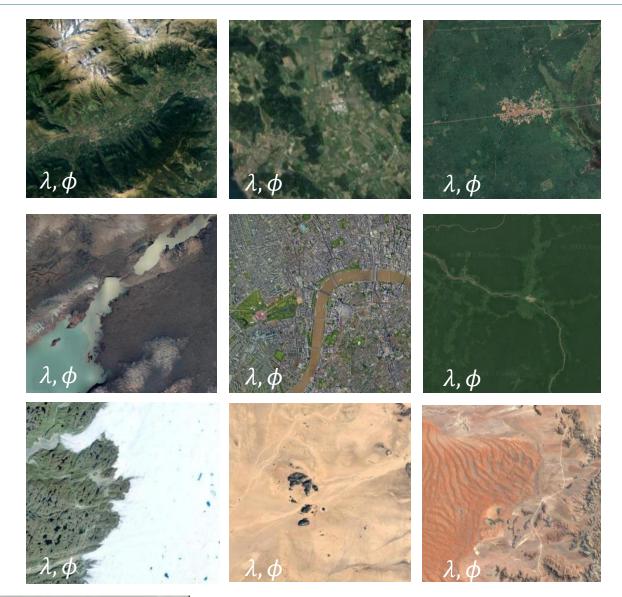
Klemmer, K., Rolf, E., Robinson, C., Mackey, L., & Rußwurm, M. (2025). **Satclip: Global, general-purpose location embeddings with satellite imagery.** AAAI 2025

A simple pre-trained MLP stores an Embedding Field



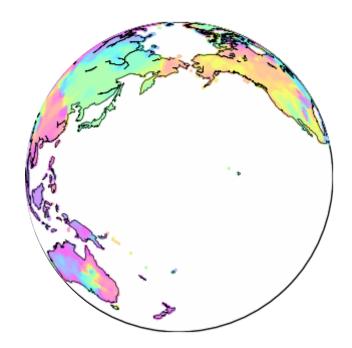
Intuition behind SatCLIP: distill location-specific patterns

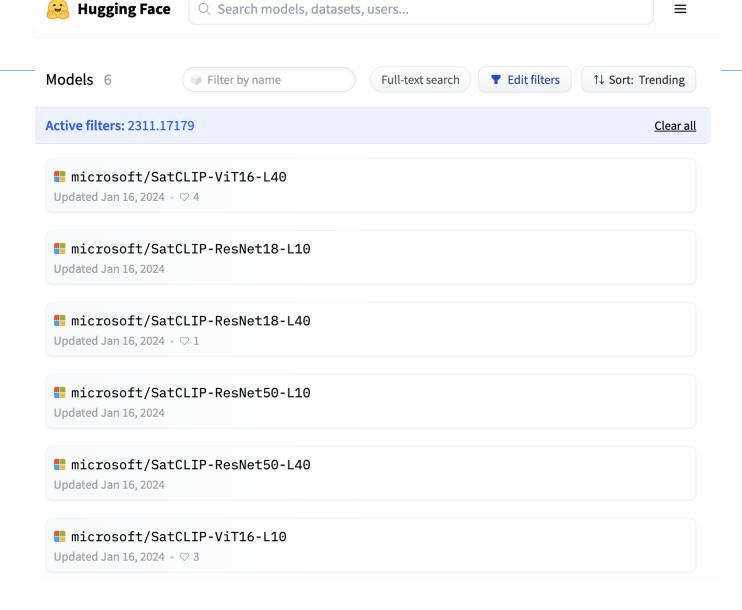




SatCLIP availability

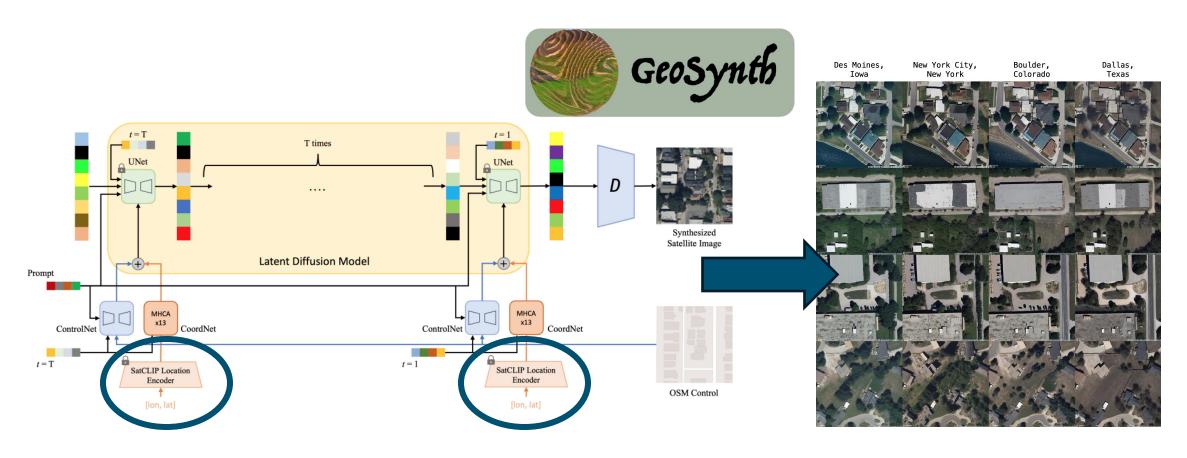
SatCLIP is a small SirenSH with weights are publicly available on HuggingFace





Conditional Image Generation

SatCLIP is used to guide diffusion models:

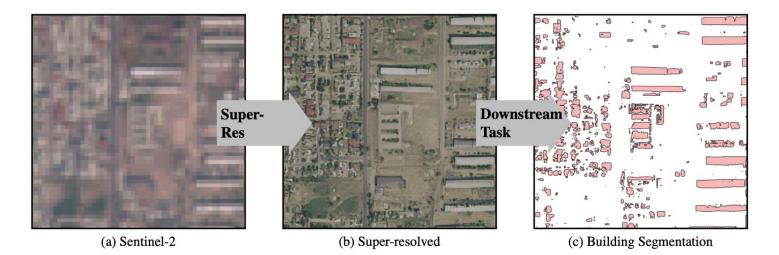


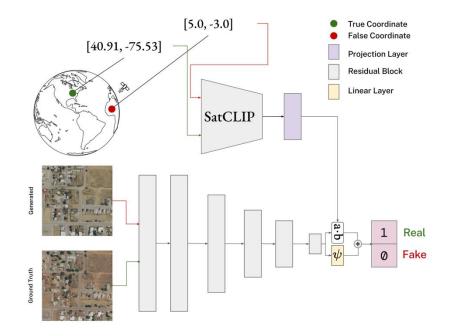
Sastry, Srikumar et al. (2024) GeoSynth: Contextually-aware high-resolution satellite image synthesis. *EarthVision, CVPR*.

Usages of SatCLIP - Location-guided super resolution

Can Location Embeddings Enhance Super-Resolution of Satellite Imagery?

Daniel Panangian* Ksenia Bittner
The Remote Sensing Technology Institute
German Aerospace Center (DLR), Wessling, Germany
{daniel.panangian, ksenia.bittner}@dlr.de



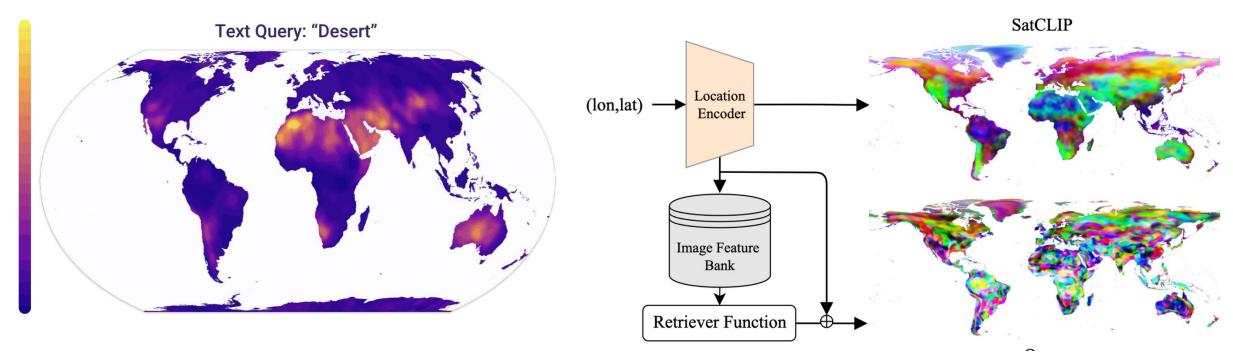


Panangian, D., & Bittner, K. (2025). Can Location Embeddings Enhance Super-Resolution of Satellite Imagery?. arXiv preprint arXiv:2501.15847.

Similar works: GeoCLIP & RANGE

GeoCLIP: CLIP-inspired alignment of ground images for worldwide geolocalization

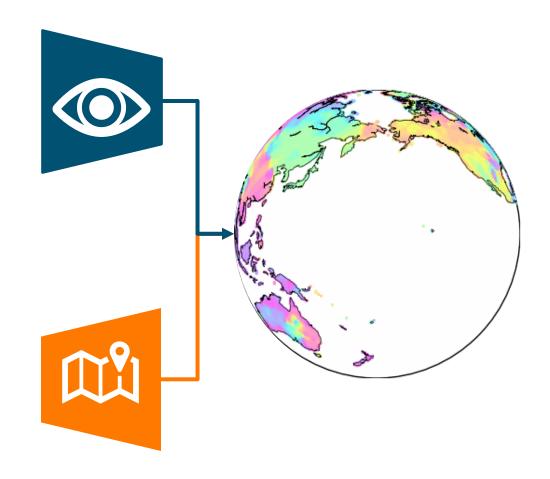
RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings



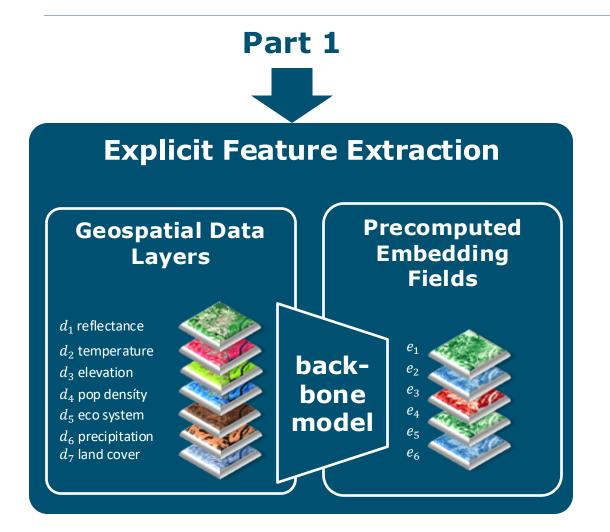
Vivanco Cepeda, Vicente, Gaurav Kumar Nayak, and Mubarak Shah. "Geoclip: Clip-inspired alignment between locations and images for effective worldwide geo-localization." Advances in Neural Information Processing Systems 36 (2023): 8690-8701.

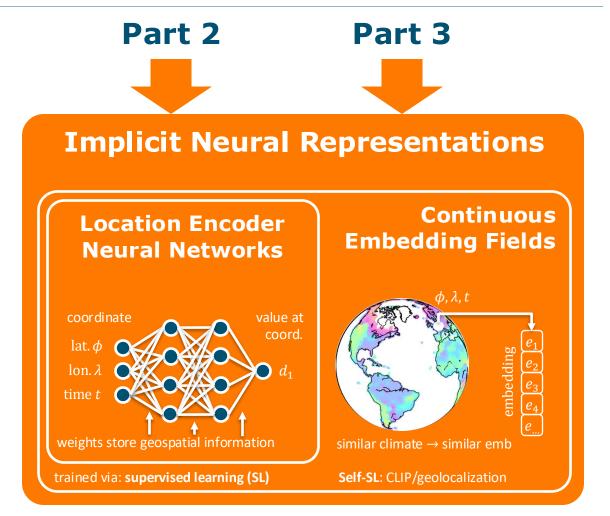
Dhakal, A., Sastry, S., Khanal, S., Ahmad, A., Xing, E., & Jacobs, N. (2025). RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 24680-24689).

Conclusion: Storing Mental Maps in Neural Nets



Explicit Feat. Extraction/Implicit Neural Representations





Embedding Databases versus Embedding Models

Explicit Feature Extraction

typically available as

Precomputed Embedding Databases

- created by "foundation" models with (cross-modal) auto-encoding
- available as compressed rasters of "deep features"
- drop-in replacement for raw geodata & build on existing geodata infrastructure (GEE)
- are generally high-resolution

Implicit Neural Representations

typically available as

Continuous Embedding Models

- created by small neural networks through self-supervised geolocalization
- available as pre-trained models (on HuggingFace)
- drop-in model to encode coordinates in neural net architectures

are generally lower-resolution

Is there one Embedding Strategy to rule them all? - No

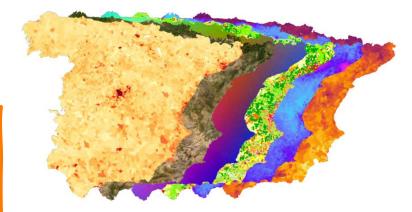
For visual Tasks: Land Cover Classifications
Image Feature Encodings are better

For contextual Tasks: Embedding models SatCLIP/GeoCLIP are better

$\mathbf{Model}\downarrow\mathbf{Task}\rightarrow$		CLC % Accuracy	$rac{\mathbf{T_{min}}}{R^2}$	$rac{\mathbf{T_{max}}}{R^2}$	$\begin{array}{c} \mathbf{PM2.5} \\ R^2 \end{array}$	$\mathbf{E100k}_1 \\ R^2$	
BL	Mean reflection Random	33.53 ± 0.66 24.60 ± 0.38	$0.69 \pm 0.01 \\ 0.00 \pm 0.00$	$0.71 \pm 0.01 \\ 0.00 \pm 0.00$	0.38 ± 0.01 0.00 ± 0.00	0.29 ± 0.01 0.00 ± 0.00	
Image Enc.	$ m RN18 ext{-}MoCo_{fc} m RN50 ext{-}DINO_{fc} m RN50 ext{-}MoCo_{fc} m ViT ext{-}DINO m ViT ext{-}MoCo m MMEarth}$	46.93 ± 0.68 47.50 ± 0.56 46.21 ± 0.61 44.83 ± 0.66 49.69 ± 0.37 44.70 ± 0.69	0.65 ± 0.01 0.80 ± 0.00 0.73 ± 0.01 0.79 ± 0.00 0.76 ± 0.01 0.71 ± 0.01	0.77 ± 0.00 0.87 ± 0.00 0.83 ± 0.00 0.85 ± 0.00 0.81 ± 0.00 0.80 ± 0.00	0.44 ± 0.01 0.54 ± 0.02 0.49 ± 0.01 0.49 ± 0.02 0.42 ± 0.02 0.44 ± 0.02	0.28 ± 0.01 0.37 ± 0.01 0.32 ± 0.02 0.32 ± 0.02 0.29 ± 0.01 0.33 ± 0.02	
Location Enc.	$\begin{array}{c} \operatorname{SatCLIP-RN18}_{L=10} \\ \operatorname{SatCLIP-RN18}_{L=40} \\ \operatorname{SatCLIP-RN50}_{L=10} \\ \operatorname{SatCLIP-RN50}_{L=40} \\ \operatorname{SatCLIP-ViT}_{L=10} \\ \operatorname{SatCLIP-ViT}_{L=40} \\ \operatorname{GeoCLIP} \end{array}$	30.30 ± 0.38 31.91 ± 0.90 30.25 ± 0.45 32.25 ± 0.64 30.46 ± 0.81 32.25 ± 0.49 30.29 ± 0.82	0.75 ± 0.22 0.86 ± 0.02 0.82 ± 0.06 0.87 ± 0.01 0.69 ± 0.16 0.87 ± 0.00 0.83 ± 0.00	0.73 ± 0.23 0.84 ± 0.02 0.80 ± 0.03 0.84 ± 0.01 0.77 ± 0.10 0.84 ± 0.01 0.82 ± 0.00	0.43 ± 0.45 0.62 ± 0.03 0.48 ± 0.18 0.53 ± 0.40 -0.07 ± 1.84 0.63 ± 0.04 0.59 ± 0.01	0.44 ± 0.05 0.50 ± 0.01 0.43 ± 0.05 0.51 ± 0.01 0.19 ± 0.65 0.50 ± 0.03 0.46 ± 0.01	

PM2.5: Air Quality

E100k: Disease Probability



Levien van Krieken WUR MSc Thesis

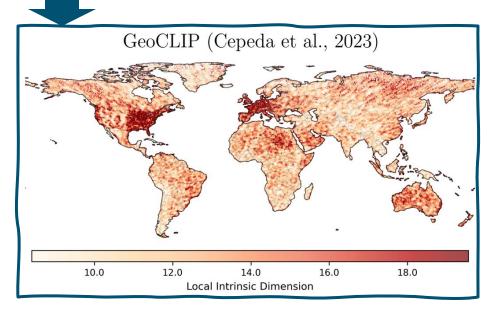
van Krieken, L. (2025). *Comparing image and location encoder models in the context of disease mapping* (MSc thesis, Wageningen University & Research).

Intrinsic Dimension (ID) to Analyze Current Embeddings

Model	D	FisherS	MLE	MOM	TLE			
Location encoders, Land sampling (100k points)								
SatCLIP-L10	256	5.00	1.96	2.02	2.16			
SatCLIP-L40	256	8.08	2.03	2.39	2.32			
GeoCLIP	512	7.68	11.21	13.02	11.53			
CSP-fMoW	256	1.70	5.18	5.23	6.25			
CSP–iNat	256	0.92	3.37	4.64	4.14			
Image encoders on S2-100K (Klemmer et al., 2025)								
RCF	512	1.64	6.32	5.23	7.10			
CROMA	768	9.79	19.57	17.00	20.30			
DOFA	768	3.32	15.58	13.78	16.20			
ResNet18	512	6.32	16.14	12.27	16.80			
ResNet50	2048	6.42	16.27	13.18	17.00			
ResNet152	2048	7.60	20.72	17.50	21.50			
ViT-Small	384	3.33	18.53	15.80	19.20			
ScaleMAE (RGB)	1024	2.96	10.16	8.90	11.00			
ResNet18 (RGB)	512	0.92	10.85	8.70	11.70			
ResNet50 (RGB)	2048	0.92	9.92	8.10	10.80			

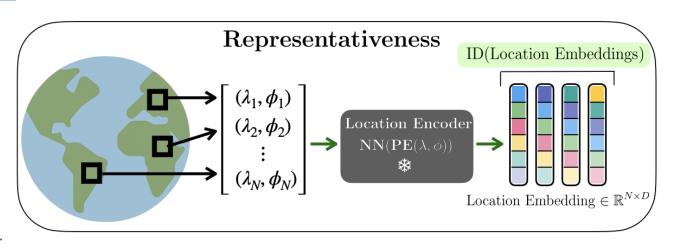
The intrinsic dimension is much lower than the ambient dimension D

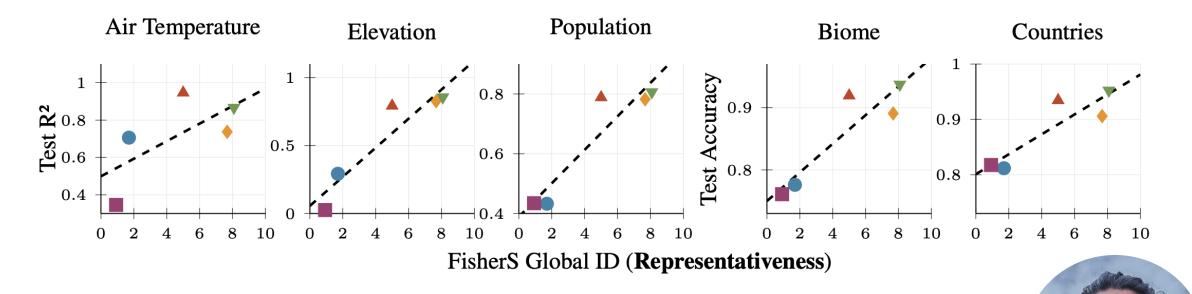
The intrinsic dimension reveals spatial artifacts due to training data biases



Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). **Measuring the Intrinsic Dimension of Earth Representations**. *arXiv preprint*

Representativeness: Higher Intrinsic Dimension Correlates with Task Performance

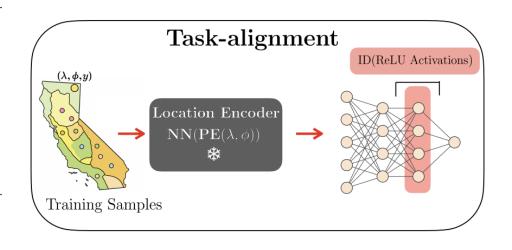




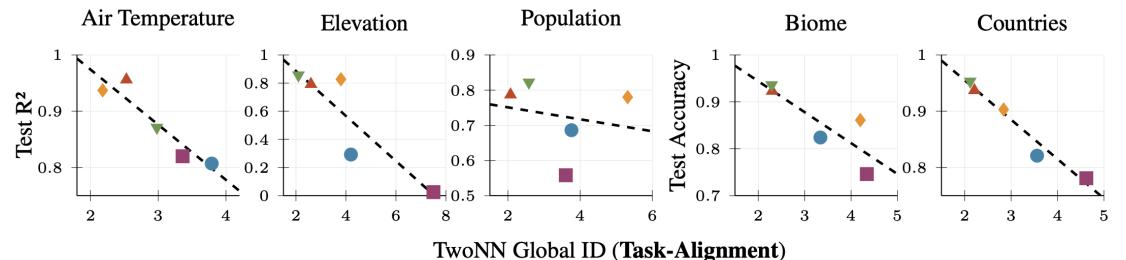
Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). **Measuring** the Intrinsic Dimension of Earth Representations. *arXiv* preprint

Task-alignment: Lower Intrinsic Dimension After Fine-tuning Correlates with Task Performance

CSP-FMoW



▼ SatCLIP-L40



♦ GeoCLIP

CSP-iNat

Rao, A., Rußwurm, M., Klemmer, K., & Rolf, E. (2025). **Measuring** the Intrinsic Dimension of Earth Representations. *arXiv* preprint

▲ SatCLIP-L10

Thank you, contacts & collaborators

Geographic Location Encoding:

Rußwurm et al., 2024, ICLR https://marcrusswurm.com/locationencoder

More technical 45 minute talk at the SSL4EO Summer School 2024

Marc Rußwurm, marc.russwurm@wur.nl

Assistant Professor Wageningen University, Netherlands

Collaborators: Esther Rolf, Konstantin Klemmer

SatCLIP:

Klemmer et al., 2025, AAAI

https://github.com/microsoft/satclip

https://arxiv.org/pdf/2311.17179.pdf

Intrinsic Dimension:

Rao et al., 2025, ArXiv

https://github.com/arjunarao619/GeoINRID

https://arxiv.org/abs/2511.02101

