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Allen Institute for AI (Ai2): a Seale-based nonprofit funded by the Paul Allen estate

Ai2 Climate Modeling:

● We sit within “AI for the Environment” group at Ai2
● Goal: Use machine learning to make faster, beer, and easier-to-use climate models
● Partners: NOAA/GFDL and DOE/LLNL (km-scale atmosphere and climate modelers), M2LInES 

and NVIDIA (fellow machine learners) & student interns

Who are we?

allenai.org/climate-modeling



Real system we’d like to represent in a… form compatible with computational prediction

Edwards, P. N. (2011)

Physically based weather and climate modeling



Make global weather and climate models: 

● more accurate
● faster 
● more aordable/accessible 

Three general strategies (atmospheric focus):
● ML for post-processing bias correction and/or 

downscaling (e.g. McGibbon et al. 2024)

● Hybrid: ML replaces/corrects parts of the atmospheric 
model (e.g. Wa-Meyer et al. 2021; Kochkov et al. 2023)

● Full model emulation: machine learning of entire 
global atmospheric evolution

Physics param.
replacement

Bias 
correction

Full model 
emulation

What is the ML responsible for?

Hybrid ML

All dynamics and physics 

How can ML help weather/climate models?



● 2019–2022: pioneering work showing 
potential for ML-based global weather 
forecasting trained on reanalysis (e.g. 
Dueben and Bauer, Weyn et al. DLWP)

● 2022–2023:  Pangu, GraphCast, etc. 
demonstrate improved 3-10 day 
deterministic weather prediction over 
operational benchmarks

● 2024–: development of probabilistic 
(e.g. GenCast, AIFS ENS) and coupled 
ocean-atmosphere models

GraphCast: Lam et al., 2023 (Science)

(ECMWF)

ML-based weather forecasts are state of the art



● U-Nets, Graph neural nets, neural operators, SWIN transformers, diffusion models

● 106 - 109 learnable parameters

● Train on ~40 years of ERA5 in days to weeks

● 10-day forecast on a single GPU in a few seconds

● Large efficiency gains from long time step and GPU-optimized matrix math

Typical strategy for ML weather prediction



ML forecasts are often not stable and/or 
accurate beyond ~2 weeks

Karlbauer et al. 2024; JAMES



Weather vs. climate emulation
● ML weather emulators are trained on decades of global reanalysis, 

which are most reliable since 1980

● The goal of climate models is to predict past and future climates that 
may lie well outside this historical range.

● Data-driven ML models are generally unreliable for extrapolation, 
because they are not directly grounded in physical principles.

● Our goal: Train an ML emulator of an excellent physically-based global 
climate model for 100-10000x speedup of routine simulations, 
ensembles, downscaling…



Our approach: Ai2 Climate Emulator (ACE)
● Derive climate as statistics of simulated weather, like physics-based 

GCMs

● Train on climate model output in addition to ERA5
○ Want to use data from diverse range of climates (global warming etc.)

● Start simple, then increase complexity:
○ Use relatively coarse 1° (100 km) grid and 8 finite volume terrain-following layers
○ Initially we used climatological SST and fixed external forcing
○ ACE2: varying external forcings (historical and increased CO2)

● Focus on long-term stability and climate accuracy



Training Setup
Loss function: mean-squared error of 6-hour forecast computed over 
all the output variables (for ACE2, accumulated over 2 forward steps)

(forcing + prognostic vars) x 180 x 360

Humidity Wind

Temperature

Input at time t

(prognostic + diagnostic vars) x 180 x 360

Prediction of  t + 6 hours
Humidity Wind

TemperatureSurface pressure Down SW sfc rad flux

Showing subset of inputs/outputs

SFNO*

*SFNO: Spherical Fourier Neural Operator from 
Bonev et al., 2023 arxiv.org/abs/2306.03838 
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💨  Prognostic:
→ horizontal winds, temperature, 
specific total water, skin 
temperature of land/sea-ice, 
surface pressure

🌞  Forcing:
→ insolation, sea surface 
temperature, surface type 
fractions, elevation (and 
sometimes CO2)

💧 Diagnostic:
→ precipitation, TOA and surface 
radiative fluxes, surface turbulent 
heat/moisture fluxes

Our variable set



Train ACE on 6-hourly 3D data—either NOAA FV3GFS/SHiELD model or ERA5 reanalysis

Regrid to 8 vertical layers on a 1° Gaussian grid for SFNO compatibility, speed, less 
storage

Reference datasets:

1. ACE: Annually-repeating SST forcing (climSST)
● 100 years of training data, 10 years of validation
● Each year is an independent sample of the same climate forcing

2. ACE2: Historical SSTs (AMIP)
● ERA5 or an SHiELD AMIP Ensemble 

3. ACE2-SOM: Slab ocean with CO2 forcing
● Present-day CO2, 2xCO2 and 4xCO2, with a simple slab ocean

ACE training data



ACE v1: Stable, accurate seasonal cycle!

Temperature 
(boundary layer 

average)

Total Water Path 
(vertically integrated 

moisture)

Watt-Meyer et al. (2023)

Indefinitely stable
800 simulated years/day on one A100 GPU 



Realistic weather variability
Outgoing longwave radiation (OLR) for first 100 days of simulation

ACE (prediction) FV3GFS (target)

Mostly realistic OLR despite model not explicitly prognosing clouds! 
But also see evidence of overly smooth prediction. 



Physical consistency

Change in Total Water Path

Surface evaporation rate

Surface precipitation rate 

Horizontal moisture transport

Balance of all these terms

Should be zero!

Plot shows a 6-hr time step 1 year into simulation

Watt-Meyer et al. (2023)



● Architecture makes a dierence
○ SFNO is very stable 

● Loss weighting of predicted fields
○ Accounts for dierent timescales of dierent variables

● Choice of variables, especially forcing inputs including SST
○ Weather emulators lock predicted ocean changes to weather, allowing error build-up 
○ Insolation and topography are important and also used by some weather emulators

Why is ACE more stable and accurate than weather emulators?

1000 year ACE2 
simulation with 
repeating SST



ACE2
● Built-in dry air and moisture conservation

● Architectural improvements in capacity, loss function, normalization

● Trained and tested on AMIP (historical SST variability)

● Add CO2 as a forcing variable

● 1500 simulated years per day on an H100 GPU

Wa-Meyer et al. 2024, hp://arxiv.org/abs/2411.11268, submied to NPJ Climate & Atm Sci 



Two new training datasets 
spanning 1940-2020:

1. ERA5 -> ACE2-ERA5
2. C96 SHiELD AMIP simulations 

-> ACE2-SHiELD

Training setup adds CO2 as input 
and some new diagnostic outputs

ACE-climSST (the previous model trained only on climSST 
dataset) fails to get trend when forced with historical SST.

ACE2: historical SST warming



ACE2’s biases relative to its target dataset are much smaller than 
the dierences between SHiELD and ERA5.

Held-out 2001-2010 test period

ACE2 has low time-mean AMIP biases on ERA5/SHiELD



2001-2010 period

ACE2 responds accurately to El Niño SST variability



Caveat: for ERA5, SHiELD and 
ACE2-ERA5 we are using a 
cyclone tracking applied to 1° 
resolution data.

Global # of cyclones is highly 
tunable based on parameters 
used for cyclone tracking, so 
hard to compare directly to 
IBTrACS.

But dierences between ERA5, 
SHiELD and ACE2-ERA5, as well 
as basin-to-basin dierences, 
are robust to changes in 
tracking.

ACE2 “tropical cyclone” distribution

2001-2010 period



Eastward propagation 
of MJO-like variability

ACE2 tropical 
precipitation 
variability

2001-2010 period



Northern Hemisphere 
(60°N)

Zonal mean zonal wind averaged from ~50hPa to TOA

Southern Hemisphere 
(60°S)

2001-2010 period

ACE2 polar stratospheric variability



● Generate training/validation data 
from three 50-year simulations:
○ 1xCO2 
○ 2xCO2 
○ 4xCO2 

● Train ACE-SOM with CO2 as an input. Q

T
s

h mixed layer

deep ocean 
(reacts slowly, 

so ignored)

F
net

 (predicted by atmosphere model)

           Source: Absorbed sunlight + infrared
           Sink: Turbulent heat loss + emitted IR 

Clark et al. 2024, hps://doi.org/10.48550/arXiv.2412.04418, 
submied to JGR-ML

ACE2 + interactive slab ocean (ACE2-SOM)



● Results are from five-member initial condition ensembles of 10-year 100 km 
SHiELD-SOM (target model) and ACE2-SOM simulations in each climate.

● ACE2-SOM did not see data from the 3xCO2 climate during training.

ACE2-SOM is stable and accurate in multiple climates



ACE2-SOM global warming paern matches the physics-based model, 
capturing robust features like amplified warming over land.

ACE2-SOM is stable and accurate in multiple climates



Out of sample test:  2% CO2 increase per year

● 70-year rollout ramping from 1xCO2 to 4xCO2 concentration
● Surface variables look good; stratosphere has a spurious climate jump
● Fixed in ACE3 by beer learning CO2 impacts on radiative heating



● ML-controlled fields (except ocean temperature) unrealistically jump to 4xCO2 regime.

● Ocean temperature, aided by prescribed thermal inertia, warms realistically slowly.

● ACE2-SOM still finds the right steady state, helped by its equilibrium 4xCO2 training.

Out of sample test: abrupt 4xCO2 increase



C96 SHiELD ACE2

Hardware 864 CPU cores 
(AMD EPYC 7H12)

1 80GB NVIDIA H100

Simulated years per wall clock day ~12 ~1500

Energy cost per simulated year [Wh] 8250 11.2

29

● Training time for each ACE2 model was about 4.5 days on eight 80GB NVIDIA 
H100s (~850 GPU-hours)

Inference throughput and energy cost

ACE2 speed and computational cost



Other applications of fast climate model emulators

● Seasonal prediction
● Green’s function experiments
● Local climate predictions on the fly



Seasonal prediction with ACE2-ERA5
● Work led by Chris Kent, Adam Scaife et al. at Met Oice using our publicly available 

ACE2-ERA5 model

● Use persistence SSTs (since ACE doesn’t have an ocean model yet…) and initialize ensemble 
forecasts on November 1 to predict DJF averages

● Skill in many respects is approaching that of Met Oice’s GloSea prediction model

Kent et al. 2025 (arxiv)Caveat: only 2001-2010 is outside the training period of ACE!



Seasonal prediction with ACE2-ERA5
● Regions of globe with predictive skill are mostly similar between ACE2 and GloSea

Kent et al. 2025 (arxiv)



Assessing importance of SST warming paern
● “Green’s function” experiments have become popular to do with AGCMs
● Involves hundreds of multi-decade simulations, each perturbing SST in a small region of 

the globe and assessing TOA radiative response (Bloch-Johnson et al. 2024)
● 2000 to 4000 years of simulation 

required in total!
● Can the massive cost-savings of AI 

emulators help us here?

Bloch-Johnson et al. 2024



Assessing importance of SST warming paern
● Strategy: train ACE on an AMIP simulation with DOE’s EAMv3, then do full suite of Green’s function 

protocol experiments and compare (not training directly on Green’s function experiments!)

● ACE generally captures the expected responses but details can dier in some regions

ACE

EAMv3

Wu et al. in prep

See also Van Loon et al. 2025 
which applies Green’s 
function methodology to 
published ACE models 
including ACE2-ERA5.



Local climate data on the fly
● AI climate emulators will make it far cheaper and easier to:

1) do simulations across a wide range of future scenarios  
2) de-bias and downscale on the fly for regions/periods of interest

Example 6hr rainfall prediction at 100km Example 6hr rainfall prediction at 3km



Local climate data on the fly
● We are developing a downscaling module that can be plugged into ACE

○ Will be trained on output from a global 3-km simulation with GFDL’s X-SHiELD model

Applying NVIDIA’s “Residual Corrective 
Diusion Modeling” approach (arXiv)

EDM Diusion
(e.g., Karras et al.)
UNet Architecture



Initial downscaling results
8x downscaling (25→3km) of tropical cyclone in NW 
Atlantic with diffusion modeling

25km Coarse Input

Generated 3km output

Target 3km X-SHiELD



Summary
● The Ai2 Climate Emulator (ACE) is a stable, accurate ML-based atmospheric 

model that is nearing suitability for climate prediction

● Faithfully reproduces reference model’s climate
○ Skillful in climSST, AMIP, and slab-ocean configurations
○ Captures forced response to greenhouse gas and SST perturbations (ENSO, Green’s functions)

● Easy to use and 100-1000x faster to run than the reference model!

● Ongoing work
○ Energy conservation & accurate learning of CO2 eects on radiative heating 
○ Coupling to an emulator of a dynamical ocean model
○ Downscaling module for assessing local impacts

Open-source code, data and model checkpoints: github.com/ai2cm/ace

ACE: Wa-Meyer et al. 2023; Duncan et al. 2024; ACE2: Wa-Meyer et al. 2024; ACE2-SOM: Clark et al. 2024


